Select the desired Level or Schedule Type to find available classes for the course. |
ME 53900 - Introduction To Scientific Machine Learning |
Credit Hours: 3.00. Introduction to the fundamentals of predictive modeling for advanced undergraduates and graduate science and engineering students that work in the intersection of data and theory.
3.000 Credit hours Syllabus Available Levels: Undergraduate, Graduate, Professional Schedule Types: Distance Learning, Lecture Offered By: School of Mechanical Engr Department: Mechanical Engineering Course Attributes: Dept Credit, Upper Division May be offered at any of the following campuses: West Lafayette Continuing Ed West Lafayette Learning Outcomes: 1. Represent mathematically the uncertainty in the parameters of physical models. 2. Propagate parametric uncertainty through physical models to quantify the induced uncertainty in quantities of interest. 3. Calibrate the uncertain parameters of physical models using experimental data. 4. Combine multiple sources of information to enhance the predictive capabilities of models. 5. Pose and solve design optimization problems under uncertainty involving expensive simulations or experiments. 6. Improve scientific writing and data visualization skills. Restrictions: May not be enrolled as the following Classifications: Freshman: 15 - 29 hours Sophomore: 45 - 59 hours Freshman: 0 - 14 hours Sophomore: 30 - 44 hours |
Return to Previous | New Search |